Pharmacology: Pharmacokinetics: Losartan: Absorption: Following oral administration, losartan is well absorbed and undergoes first-pass metabolism, forming an active carboxylic acid metabolite and other inactive metabolites. The systemic bioavailability of Losartan is approximately 33%. Mean peak concentrations of losartan and its active metabolite are reached in 1 hour and in 3-4 hours, respectively.
Distribution: Both losartan and its active metabolite are ≥ 99% bound to plasma proteins, primarily albumin. The volume of distribution of losartan is 34 litres.
Biotransformation: About 14% of an intravenously or orally-administered dose of losartan is converted to its active metabolite. Following oral and intravenous administration of 14C-labelled losartan potassium, circulating plasma radioactivity primarily is attributed to losartan and its active metabolite. Minimal conversion of losartan to its active metabolite was seen in about one percent of individuals studied. In addition to the active metabolite, inactive metabolites are formed.
Elimination: Plasma clearance of losartan and its active metabolite is about 600 mL/min and 50 mL/min, respectively. Renal clearance of losartan and its active metabolite is about 74 mL/min and 26 mL/min, respectively. When losartan is administered orally, about 4% of the dose is excreted unchanged in the urine, and about 6% of the dose is excreted in the urine as active metabolite. The pharmacokinetics of losartan and its active metabolite are linear with oral losartan potassium doses up to 200 mg.
Following oral administration, plasma concentrations of losartan and its active metabolite decline polyexponentially with a terminal half-life of about 2 hours and 6-9 hours, respectively. During once-daily dosing with 100 mg, neither losartan nor its active metabolite accumulates significantly in plasma.
Both biliary and urinary excretion contribute to the elimination of losartan and its metabolites. Following an oral dose of 14C-labelled losartan in man, about 35%/43% of radioactivity is recovered in the urine and 58%/50% in the faeces.
Characteristics in patients: In elderly hypertensive patients the plasma concentrations of losartan and its active metabolite do not differ essentially from those found in young hypertensive patients.
In female hypertensive patients the plasma levels of losartan were up to twice as high as in male hypertensive patients, while the plasma levels of the active metabolite did not differ between men and women.
In patients with mild to moderate alcoholic cirrhosis, plasma level of losartan and its active metabolite after oral administration were, respectively, 5 and 1.7 times higher than in young male volunteers.
Plasma concentrations of losartan are not altered in patients with creatinine clearance above 10 mL/min. Compared to patients with normal renal function, the AUC for losartan is about 2 times higher in haemodialysis patients.
The plasma concentrations of the active metabolite are not altered in patients with renal impairment or in haemodialysis patients. Neither losartan nor the active metabolite can be removed by haemodialysis.
Pharmacokinetics in paediatric patients: The pharmacokinetics of losartan have been investigated in 50 hypertensive paediatric patients > 1 month to < 16 years of age following once daily oral administration of approximately 0.54 to 0.77 mg/kg of losartan (mean doses).
The results showed that the active metabolite is formed from losartan in all age groups. The results showed roughly similar pharmacokinetic parameters of losartan following oral administration in infants and toddlers, preschool children, school age children and adolescents. The pharmacokinetic parameters for the metabolite differed to a greater extent between the age groups. When comparing preschool children with adolescents these differences became statistically significant. Exposure in infants/toddlers was comparatively high.
Amlodipine: Absorption, distribution, plasma protein binding: After oral administration of therapeutic doses, amlodipine is well absorbed with peak blood levels between 6-12 hours post dose. Absolute bioavailability has been estimated to be between 64 and 80%. The volume of distribution is approximately 21 L/kg. In vitro studies have shown that approximately 97.5% of circulating amlodipine is bound to plasma proteins.
The bioavailability of amlodipine is not affected by food intake.
Biotransformation/elimination: The terminal plasma elimination half-life is about 35-50 hours and is consistent with once daily dosing. Amlodipine is extensively metabolised by the liver to inactive metabolites with 10% of the parent compound and 60% of metabolites excreted in the urine.
Use in children: A population PK study has been conducted in 74 hypertensive children aged from 12 months to 17 years (with 34 patients aged 6 to 12 years and 28 patients aged 13 to 17 years) receiving amlodipine between 1.25 and 20 mg given either once or twice daily. In children 6 to 12 years and in adolescents 13-17 years of age the typical oral clearance (CL/F) was 22.5 and 27.4 L/hr respectively in males and 16.4 and 21.3 L/hr respectively in females. Large variability in exposure between individuals was observed. Data reported in children below 6 years is limited.
Use in Elderly: The time to reach peak plasma concentrations of amlodipine is similar in elderly and younger subjects. Amlodipine clearance tends to be decreased with resulting increases in AUC and elimination half-life in elderly patients. Increases in AUC and elimination half-life in patients with congestive heart failure were as expected for the patient age group studied.
Patients with impaired hepatic function: Very limited clinical data are available regarding amlodipine administration in patients with hepatic impairment. Patients with hepatic insufficiency have decreased clearance of amlodipine resulting in a longer half-life and an increase in AUC of approximately 40-60%.
Other Services
Country
Account