Advertisement
Advertisement
Tenof-Em

Tenof-Em Mechanism of Action

emtricitabine + tenofovir

Manufacturer:

Hetero Labs

Distributor:

Camber
Full Prescribing Info
Action
Pharmacology: Pharmacodynamics: Mechanism of Action: Emtricitabine and tenofovir disoproxil fumarate is a fixed-dose combination of antiviral drugs emtricitabine and tenofovir disoproxil fumarate (see Microbiology under Actions).
Clinical Studies: Clinical Study 934 supports the use of emtricitabine and tenofovir disoproxil fumarate tablets for the treatment of HIV- 1 infection. Additional data in support of the use of emtricitabine and tenofovir disoproxil fumarate are derived from clinical Study 903, in which lamivudine and tenofovir disoproxil fumarate (tenofovir DF) were used in combination in treatment-naïve adults, and clinical Study 303 in which emtricitabine and lamivudine demonstrated comparable efficacy, safety and resistance patterns as part of multidrug regimens. For additional information about these trials, please consult the prescribing information for tenofovir DF and emtricitabine. The iPrEx study and Partners PrEP study support the use of emtricitabine and tenofovir disoproxil fumarate to help reduce the risk of acquiring HIV-1.
Study 934: Data through 144 weeks are reported for Study 934, a randomized, open-label, active-controlled multicenter trial comparing emtricitabine + tenofovir DF administered in combination with efavirenz versus zidovudine/lamivudine fixed- dose combination administered in combination with efavirenz in 511 antiretroviral-naïve subjects. From Weeks 96 to 144 of the trial, subjects received emtricitabine and tenofovir disoproxil fumarate with efavirenz in place of emtricitabine + tenofovir DF with efavirenz. Subjects had a mean age of 38 years (range 18 to 80), 86% were male, 59% were Caucasian and 23% were Black. The mean baseline CD4+ cell count was 245 cells/mm3 (range 2 to 1191) and median baseline plasma HIV-1 RNA was 5.01 log10 copies/mL (range 3.56 to 6.54). Subjects were stratified by baseline CD4+ cell count (< or ≥200 cells/mm3); 41% had CD4+ cell counts <200 cells/mm3 and 51% of subjects had baseline viral loads >100,000 copies/mL. Treatment outcomes through 48 and 144 weeks for those subjects who did not have efavirenz resistance at baseline are presented in Table 1. (See Table 1).

Click on icon to see table/diagram/image

Through Week 48, 84% and 73% of subjects in the emtricitabine + tenofovir DF group and the zidovudine/lamivudine group, respectively, achieved and maintained HIV-1 RNA <400 copies/mL (71% and 58% through Week 144). The difference in the proportion of subjects who achieved and maintained HIV-1 RNA <400 copies/mL through 48 weeks largely results from the higher number of discontinuations due to adverse events and other reasons in the zidovudine/lamivudine group in this open-label trial. In addition, 80% and 70% of subjects in the emtricitabine + tenofovir DF group and the zidovudine/lamivudine group, respectively, achieved and maintained HIV-1 RNA <50 copies/mL through Week 48 (64% and 56% through Week 144). The mean increase from baseline in CD4+cell count was 190 cells/mm3 in the emtricitabine + tenofovir DF group and 158 cells/mm3 in the zidovudine/lamivudine group at Week 48 (312 and 271 cells/mm3 at Week 144).
Through 48 weeks, 7 subjects in the emtricitabine + tenofovir DF group and 5 subjects in the zidovudine/lamivudine group experienced a new CDC Class C event (10 and 6 subjects through 144 weeks).
iPrEx Trial: The iPrEx trial was a randomized double-blind placebo-controlled multinational study evaluating emtricitabine and tenofovir disoproxil fumarate in 2499 HIV-seronegative men or transgender women who have sex with men and with evidence of high risk behavior for HIV-1 infection. Evidence of high risk behavior included any one of the following reported to have occurred up to six months prior to study screening: no condom use during anal intercourse with an HIV-1 positive partner or a partner of unknown HIV status; anal intercourse with more than 3 sex partners; exchange of money, gifts, shelter or drugs for anal sex; sex with male partner and diagnosis of sexually transmitted infection; no consistent use of condoms with sex partner known to be HIV-1 positive.
All subjects received monthly HIV-1 testing, risk-reduction counseling, condoms and management of sexually transmitted infections. Of the 2499 enrolled, 1251 received emtricitabine and tenofovir disoproxil fumarate and 1248 received placebo. The mean age of subjects was 27 years, 5% were Asian, 9% Black, 18% White, and 72% Hispanic/Latino.
Subjects were followed for 4237 person-years. The primary outcome measure for the study was the incidence of documented HIV seroconversion. At the end of treatment, emergent HIV-1 seroconversion was observed in 131 subjects, of which 48 occurred in the emtricitabine and tenofovir disoproxil fumarate group and 83 occurred in the placebo group, indicating a 42% (95% CI: 18% to 60%) reduction in risk. Risk reduction was found to be higher (53%; 95% CI : 34% to 72%) among subjects who reported previous unprotected anal intercourse (URAI) at screening (732 and 753 subjects reported URAI within the last 12 weeks at screening in the emtricitabine and tenofovir disoproxil fumarate and placebo groups, respectively). In a post-hoc case control study of plasma and intracellular drug levels in about 10% of study subjects, risk reduction appeared to be the greatest in subjects with detectable intracellular tenofovir. Efficacy was therefore strongly correlated with adherence.
Partners PrEP Trial: The Partners PrEP trial was a randomized, double-blind, placebo-controlled 3 arm trial conducted in 4758 serodiscordant heterosexual couples in Kenya and Uganda to evaluate the efficacy and safety of TDF (N=1589) and FTC/TDF (N=1583) versus (parallel comparison) placebo (N=1586), in preventing HIV-1 acquisition by the uninfected partner.
All subjects received monthly HIV-1 testing, evaluation of adherence, assessment of sexual behavior, and safety evaluations. Women were also tested monthly for pregnancy. Women who became pregnant during the trial had study drug interrupted for the duration of the pregnancy and while breastfeeding. The uninfected partner subjects were predominantly male (61 to 64% across study drug groups), and had a mean age of 33 to 34 years.
Following 7827 person-years of follow up, 82 emergent HIV-1 seroconversions were reported, with an overall observed seroincidence rate of 1.05 per 100 person-years. Of the 82 seroconversions, 13 and 52 occurred in partner subjects randomized to emtricitabine and tenofovir disoproxil fumarate and placebo, respectively. Two of the 13 seroconversions in the emtricitabine and tenofovir disoproxil fumarate arm and 3 of the 52 seroconversions in the placebo arm occurred in women during treatment interruptions for pregnancy. The risk reduction for emtricitabine and tenofovir disoproxil fumarate relative to placebo was 75% (95% CI: 55% to 87%). In a post-hoc case control study of plasma drug levels in about 10% of study subjects, risk reduction appeared to be the greatest in subjects with detectable plasma tenofovir. Efficacy was therefore strongly correlated with adherence.
Pharmacokinetics: Emtricitabine and Tenofovir Disoproxil Fumarate: One emtricitabine and tenofovir disoproxil fumarate tablet was bioequivalent to one emtricitabine capsule (200 mg) plus one tenofovir disoproxil fumarate tablet (300 mg) following single-dose administration to fasting healthy subjects (N=39).
Emtricitabine: The pharmacokinetic properties of emtricitabine are summarized in Table 1. Following oral administration of emtricitabine, emtricitabine is rapidly absorbed with peak plasma concentrations occurring at 1 to 2 hours post- dose. Less than 4% of emtricitabine binds to human plasma proteins in vitro and the binding is independent of concentration over the range of 0.02 to 200 mcg/mL. Following administration of radiolabelled emtricitabine, approximately 86% is recovered in the urine and 13% is recovered as metabolites. The metabolites of emtricitabine include 3-sulfoxide diastereomers and their glucuronic acid conjugate. Emtricitabine is eliminated by a combination of glomerular filtration and active tubular secretion. Following a single oral dose of emtricitabine, the plasma emtricitabine half-life is approximately 10 hours.
Tenofovir Disoproxil Fumarate: The pharmacokinetic properties of tenofovir disoproxil fumarate are summarized in Table 2. Following oral administration of tenofovir disoproxil fumarate, maximum tenofovir serum concentrations are achieved in 1 ± 0.4 hour. Less than 0.7% of tenofovir binds to human plasma proteins in vitro and the binding is independent of concentration over the range of 0.01 to 25 mcg/mL. Approximately 70 to 80% of the intravenous dose of tenofovir is recovered as unchanged drug in the urine. Tenofovir is eliminated by a combination of glomerular filtration and active tubular secretion. Following a single oral dose of tenofovir disoproxil fumarate, the terminal elimination half-life of tenofovir is approximately 17 hours. (See Table 2).

Click on icon to see table/diagram/image

Effects of Food on Oral Absorption: Emtricitabine and Tenofovir disoproxil fumarate may be administered with or without food. Administration of emtricitabine and tenofovir disoproxil fumarate following a high fat meal (784 kcal; 49 grams of fat) or a light meal (373 kcal; 8 grams of fat) delayed the time of tenofovir Cmax by approximately 0.75 hour. The mean increases in tenofovir AUC and Cmax were approximately 35% and 15%, respectively, when administered with a high fat or light meal, compared to administration in the fasted state. In previous safety and efficacy trials, tenofovir disoproxil fumarate was taken under fed conditions. Emtricitabine systemic exposures (AUC and Cmax) were unaffected when emtricitabine and tenofovir disoproxil fumarate was administered with either a high fat or a light meal.
Special Populations: Race: Emtricitabine: No pharmacokinetic differences due to race have been identified following the administration of emtricitabine.
Tenofovir Disoproxil Fumarate: There were insufficient numbers from racial and ethnic groups other than Caucasian to adequately determine potential pharmacokinetic differences among these populations following the administration of tenofovir disoproxil fumarate.
Gender: Emtricitabine and Tenofovir Disoproxil Fumarate: Emtricitabine and tenofovir pharmacokinetics are similar in male and female subjects.
Pediatric Patients: The pharmacokinetic data for tenofovir and emtricitabine following administration of emtricitabine and tenofovir disoproxil fumarate in pediatric subjects weighing 17 kg and above are not available. The dosing recommendations of emtricitabine and tenofovir disoproxil fumarate in this population are based on the dosing recommendations of emtricitabine and tenofovir disoproxil fumarate in this population. Refer to the emtricitabine and tenofovir disoproxil fumarate prescribing information for pharmacokinetic information on the individual products in pediatric patients. Emtricitabine and tenofovir disoproxil fumarate should not be administered to HIV-1 infected pediatric patients weighing less than 17 kg.
Geriatric Patients: Pharmacokinetics of emtricitabine and tenofovir have not been fully evaluated in the elderly (65 years of age and older).
Patients with Impaired Renal Function: The pharmacokinetics of emtricitabine and tenofovir are altered in subjects with renal impairment (see Precautions). In adult subjects with creatinine clearance below 50 mL/min, Cmax and AUC0 to ∞ of emtricitabine and tenofovir were increased. It is recommended that the dosing interval for emtricitabine and tenofovir disoproxil fumarate be modified in HIV-infected adult patients with estimated creatinine clearance 30 to 49 mL/min. No data are available to make dose recommendations in pediatric patients with renal impairment. Emtricitabine and Tenofovir disoproxil fumarate should not be used in patients with estimated creatinine clearance below 30 mL/min and in patients with end-stage renal disease requiring dialysis (see Dosage & Administration).
Emtricitabine and Tenofovir disoproxil fumarate for a PrEP indication should not be used in HIV-1 uninfected individuals with estimated creatinine clearance below 60 mL/min. If a decrease in estimated creatinine clearance is observed in uninfected individuals while using emtricitabine and tenofovir disoproxil fumarate for PrEP, evaluate potential causes and re-assess potential risks and benefits of continued use (see Dosage & Administration).
Patients with Hepatic Impairment: The pharmacokinetics of tenofovir following a 300 mg dose of tenofovir disoproxil fumarate have been studied in non- HIV infected subjects with moderate to severe hepatic impairment. There were no substantial alterations in tenofovir pharmacokinetics in subjects with hepatic impairment compared with unimpaired subjects. The pharmacokinetics of emtricitabine and tenofovir disoproxil fumarate or emtricitabine have not been studied in subjects with hepatic impairment; however, emtricitabine is not significantly metabolized by liver enzymes, so the impact of liver impairment should be limited.
Assessment of Drug Interactions: The steady state pharmacokinetics of emtricitabine and tenofovir were unaffected when emtricitabine and tenofovir disoproxil fumarate were administered together versus each agent dosed alone.
In vitro studies and clinical pharmacokinetic drug-drug interaction trials have shown that the potential for CYP mediated interactions involving emtricitabine and tenofovir with other medicinal products is low.
No clinically significant drug interactions have been observed between emtricitabine and famciclovir, indinavir, stavudine, tenofovir disoproxil fumarate, and zidovudine. Similarly, no clinically significant drug interactions have been observed between tenofovir disoproxil fumarate and efavirenz, methadone, nelfinavir, oral contraceptives, ribavirin, or sofosbuvir in trials conducted in healthy volunteers (see Tables 3, 4, 5 and 6).

Click on icon to see table/diagram/image


Click on icon to see table/diagram/image


Click on icon to see table/diagram/image


Click on icon to see table/diagram/image

Coadministration of tenofovir disoproxil fumarate with didanosine results in changes in the pharmacokinetics of didanosine that may be of clinical significance. Concomitant dosing of tenofovir disoproxil fumarate with didanosine enteric-coated capsules significantly increases the C and AUC of didanosine. When didanosine 250 mg enteric- coated capsules were administered with tenofovir disoproxil fumarate, systemic exposures of didanosine were similar to those seen with the 400 mg enteric-coated capsules alone under fasted conditions. The mechanism of this interaction is unknown. See Interactions regarding use of didanosine with tenofovir disoproxil fumarate.
Toxicology: Carcinogenesis, Mutagenesis, Impairment of Fertility: Emtricitabine: In long-term oral carcinogenicity studies of emtricitabine, no drug-related increases in tumor incidence were found in mice at doses up to 750 mg/kg/day (26 times the human systemic exposure at the therapeutic dose of 200 mg/day) or in rats at doses up to 600 mg/kg/day (31 times the human systemic exposure at the therapeutic dose).
Emtricitabine was not genotoxic in the reverse mutation bacterial test (Ames test), mouse lymphoma or mouse micronucleus assays.
Emtricitabine did not affect fertility in male rats at approximately 140-fold or in male and female mice at approximately 60-fold higher exposures (AUC) than in humans given the recommended 200 mg daily dose. Fertility was normal in the offspring of mice exposed daily from before birth (in utero) through sexual maturity at daily exposures (AUC) of approximately 60-fold higher than human exposures at the recommended 200 mg daily dose.
Tenofovir Disoproxil Fumarate: Long-term oral carcinogenicity studies of tenofovir disoproxil fumarate in mice and rats were carried out at exposures up to approximately 16 times (mice) and 5 times (rats) those observed in humans at the therapeutic dose for HIV-1 infection. At the high dose in female mice, liver adenomas were increased at exposures 16 times that in humans. In rats, the study was negative for carcinogenic findings at exposures up to 5 times that observed in humans at the therapeutic dose.
Tenofovir disoproxil fumarate was mutagenic in the in vitro mouse lymphoma assay and negative in an in vitro bacterial mutagenicity test (Ames test). In an in vivo mouse micronucleus assay, tenofovir disoproxil fumarate was negative when administered to male mice.
There were no effects on fertility, mating performance or early embryonic development when tenofovir disoproxil fumarate was administered to male rats at a dose equivalent to 10 times the human dose based on body surface area comparisons for 28 days prior to mating and to female rats for 15 days prior to mating through day seven of gestation. There was, however, an alteration of the estrous cycle in female rats.
Animal Toxicology and/or Pharmacology: Tenofovir and tenofovir disoproxil fumarate administered in toxicology studies to rats, dogs and monkeys at exposures (based on AUCs) greater than or equal to 6-fold those observed in humans caused bone toxicity. In monkeys the bone toxicity was diagnosed as osteomalacia. Osteomalacia observed in monkeys appeared to be reversible upon dose reduction or discontinuation of tenofovir. In rats and dogs, the bone toxicity manifested as reduced bone mineral density. The mechanism(s) underlying bone toxicity is unknown.
Evidence of renal toxicity was noted in 4 animal species. Increases in serum creatinine, BUN, glycosuria, proteinuria, phosphaturia, and/or calciuria and decreases in serum phosphate were observed to varying degrees in these animals. These toxicities were noted at exposures (based on AUCs) 2 to 20 times higher than those observed in humans. The relationship of the renal abnormalities, particularly the phosphaturia, to the bone toxicity is not known.
Microbiology: Mechanism of Action: Emtricitabine: Emtricitabine, a synthetic nucleoside analog of cytidine, is phosphorylated by cellular enzymes to form emtricitabine 5'-triphosphate. Emtricitabine 5'-triphosphate inhibits the activity of the HIV-1 reverse transcriptase (RT) by competing with the natural substrate deoxycytidine 5'-triphosphate and by being incorporated into nascent viral DNA which results in chain termination. Emtricitabine 5'-triphosphate is a weak inhibitor of mammalian DNA polymerase a, b, e and mitochondrial DNA polymerase γ.
Tenofovir Disoproxil Fumarate: Tenofovir disoproxil fumarate is an acyclic nucleoside phosphonate diester analog of adenosine monophosphate. Tenofovir disoproxil fumarate requires initial diester hydrolysis for conversion to tenofovir and subsequent phosphorylations by cellular enzymes to form tenofovir diphosphate. Tenofovir diphosphate inhibits the activity of HIV-1 RT by competing with the natural substrate deoxyadenosine 5'-triphosphate and, after incorporation into DNA, by DNA chain termination. Tenofovir diphosphate is a weak inhibitor of mammalian DNA polymerases a, b, and mitochondrial DNA polymerase γ.
Antiviral Activity: Emtricitabine and Tenofovir Disoproxil Fumarate: No antagonism was observed in combination studies evaluating the cell culture antiviral activity of emtricitabine and tenofovir together.
Emtricitabine: The antiviral activity of emtricitabine against laboratory and clinical isolates of HIV-1 was assessed in lymphoblastoid cell lines, the MAGI-CCR5 cell line, and peripheral blood mononuclear cells. The 50% effective concentration (EC50) values for emtricitabine were in the range of 0.0013 to 0.64 µM (0.0003 to 0.158 mcg/mL). In drug combination studies of emtricitabine with nucleoside reverse transcriptase inhibitors (abacavir, lamivudine, stavudine, zidovudine), non-nucleoside reverse transcriptase inhibitors (delavirdine, efavirenz, nevirapine), and protease inhibitors (amprenavir, nelfinavir, ritonavir, saquinavir), no antagonism was observed. Emtricitabine displayed antiviral activity in cell culture against HIV-1 clades A, B, C, D, E, F, and G (EC50 values ranged from 0.007 to 0.075 µM) and showed strain specific activity against HIV-2 (EC50 values ranged from 0.007 to 1.5 µM).
Tenofovir Disoproxil Fumarate: The antiviral activity of tenofovir against laboratory and clinical isolates of HIV-1 was assessed in lymphoblastoid cell lines, primary monocyte/macrophage cells and peripheral blood lymphocytes. The EC50 values for tenofovir were in the range of 0.04 to 8.5 µM. In drug combination studies of tenofovir with nucleoside reverse transcriptase inhibitors (abacavir, didanosine, lamivudine, stavudine, zidovudine), non-nucleoside reverse transcriptase inhibitors (delavirdine, efavirenz, nevirapine), and protease inhibitors (amprenavir, indinavir, nelfinavir, ritonavir, saquinavir), no antagonism was observed. Tenofovir displayed antiviral activity in cell culture against HIV- 1 clades A, B, C, D, E, F, G and O (EC50 values ranged from 0.5 to 2.2 µM) and showed strain specific activity against HIV-2 (EC50 values ranged from 1.6 µM to 5.5 µM).
Prophylactic Activity in a Nonhuman Primate Model of HIV Transmission: Emtricitabine and Tenofovir Disoproxil Fumarate: The prophylactic activity of the combination of daily oral emtricitabine (FTC) and tenofovir disoproxil fumarate (TDF) was evaluated in a controlled study of macaques inoculated once weekly for 14 weeks with SIV/HIV-1 chimeric virus (SHIV) applied to the rectal surface. Of the 18 control animals, 17 became infected after a median of 2 weeks. In contrast, 4 of the 6 animals treated daily with oral FTC and TDF remained uninfected and the two infections that did occur were significantly delayed until 9 and 12 weeks and exhibited reduced viremia. An M184I-expressing FTC-resistant variant emerged in 1 of the 2 macaques after 3 weeks of continued drug exposure.
Resistance: Emtricitabine and Tenofovir Disoproxil Fumarate: HIV-1 isolates with reduced susceptibility to the combination of emtricitabine and tenofovir have been selected in cell culture. Genotypic analysis of these isolates identified the M184V/I and/or K65R amino acid substitutions in the viral RT. In addition, a K70E substitution in HIV-1 reverse transcriptase has been selected by tenofovir and results in reduced susceptibility to tenofovir.
In a clinical trial of treatment-naïve subjects (Study 934, see Clinical Studies previously), resistance analysis was performed on HIV-1 isolates from all confirmed virologic failure subjects with greater than 400 copies/mL of HIV-1 RNA at Week 144 or early discontinuation. Development of efavirenz resistance-associated substitutions occurred most frequently and was similar between the treatment arms. The M184V amino acid substitution, associated with resistance to emtricitabine and lamivudine, was observed in 2/19 analyzed subject isolates in the emtricitabine + tenofovir disoproxil fumarate group and in 10/29 analyzed subject isolates in the zidovudine/lamivudine group. Through 144 weeks of Study 934, no subjects have developed a detectable K65R or K70E substitution in their HIV-1 as analyzed through standard genotypic analysis.
Emtricitabine: Emtricitabine-resistant isolates of HIV-1 have been selected in cell culture and in vivo. Genotypic analysis of these isolates showed that the reduced susceptibility to emtricitabine was associated with a substitution in the HIV- 1 RT gene at codon 184 which resulted in an amino acid substitution of methionine by valine or isoleucine (M184V/I).
Tenofovir Disoproxil Fumarate: HIV-1 isolates with reduced susceptibility to tenofovir have been selected in cell culture. These viruses expressed a K65R substitution in RT and showed a 2 to 4 fold reduction in susceptibility to tenofovir.
In treatment-naïve subjects, isolates from 8/47 (17%) analyzed subjects developed the K65R substitution in the tenofovir disoproxil fumarate arm through 144 weeks; 7 occurred in the first 48 weeks of treatment and 1 at Week 96. In treatment-experienced subjects, 14/304 (5%) isolates from subjects failing tenofovir disoproxil fumarate through Week 96 showed greater than 1.4 fold (median 2.7) reduced susceptibility to tenofovir. Genotypic analysis of the resistant isolates showed a K65R amino acid substitution in the HIV-1 RT.
iPrEx Trial: In a clinical study of HIV-1 seronegative subjects (iPrEx Trial, see Clinical Studies previously), no amino acid substitutions associated with resistance to emtricitabine or tenofovir were detected at the time of seroconversion among 48 subjects in the emtricitabine and tenofovir disoproxil fumarate group and 83 subjects in the placebo group who became infected with HIV-1 during the trial. Ten subjects were observed to be HIV-1 infected at time of enrollment. The M184V/I substitutions associated with resistance to emtricitabine were observed in 3 of the 10 subjects (2 of 2 in the emtricitabine and tenofovir disoproxil fumarate group and 1 of 8 in the placebo group). One of the two subjects in the emtricitabine and tenofovir disoproxil fumarate group harbored wild type virus at enrollment and developed the M184V substitution 4 weeks after enrollment. The other subject had indeterminate resistance at enrollment but was found to have the M184I substitution 4 weeks after enrollment.
Partners PrEP Trial: In a clinical study of HIV-1 seronegative subjects (Partners PrEP Trial, see Clinical Studies previously), no variants expressing amino acid substitutions associated with resistance to emtricitabine or tenofovir were detected at the time of seroconversion among 12 subjects in the emtricitabine and tenofovir disoproxil fumarate group, 15 subjects in the tenofovir disoproxil fumarate group, and 51 subjects in the placebo group. Fourteen subjects were observed to be HIV-1 infected at the time of enrollment (3 in the emtricitabine and tenofovir disoproxil fumarate group, 5 in the tenofovir disoproxil fumarate group, and 6 in the placebo group). One of the three subjects in the emtricitabine and tenofovir disoproxil fumarate group who was infected with wild type virus at enrollment selected an M184V expressing virus by week 12. Two of the five subjects in the tenofovir disoproxil fumarate group had tenofovir-resistant viruses at the time of seroconversion; one subject infected with wild type virus at enrollment developed a K65R substitution by week 16, while the second subject had virus expressing the combination of D67N and K70R substitutions upon seroconversion at week 60, although baseline virus was not genotyped and it is unclear if the resistance emerged or was transmitted. Following enrollment, 4 subjects (2 in the tenofovir disoproxil fumarate group, 1 in the emtricitabine and tenofovir disoproxil fumarate group, and 1 in the placebo group) had virus expressing K103N or V106A substitutions, which confer high-level resistance to NNRTIs but have not been associated with tenofovir or emtricitabine and may have been present in the infecting virus.
Cross Resistance: Emtricitabine and Tenofovir Disoproxil Fumarate: Cross-resistance among certain nucleoside reverse transcriptase inhibitors (NRTIs) has been recognized. The M184V/I and/or K65R substitutions selected in cell culture by the combination of emtricitabine and tenofovir are also observed in some HIV-1 isolates from subjects failing treatment with tenofovir in combination with either emtricitabine or lamivudine, and either abacavir or didanosine. Therefore, cross-resistance among these drugs may occur in patients whose virus harbors either or both of these amino acid substitutions.
Emtricitabine: Emtricitabine-resistant isolates (M184V/I) were cross-resistant to lamivudine but retained susceptibility in cell culture to the NRTIs didanosine, stavudine, tenofovir, and zidovudine, and to NNRTIs (delavirdine, efavirenz, and nevirapine). HIV-1 isolates containing the K65R substitution, selected in vivo by abacavir, didanosine, and tenofovir, demonstrated reduced susceptibility to inhibition by emtricitabine. Viruses harboring substitutions conferring reduced susceptibility to stavudine and zidovudine (M41L, D67N, K70R, L210W, T215Y/F, K219Q/E), or didanosine (L74V) remained sensitive to emtricitabine. HIV-1 containing the K103N substitution associated with resistance to NNRTIs was susceptible to emtricitabine.
Tenofovir Disoproxil Fumarate: The K65R and K70E substitutions selected by tenofovir are also selected in some HIV- 1-infected patients treated with abacavir or didanosine. HIV-1 isolates with the K65R and K70E substitutions also showed reduced susceptibility to emtricitabine and lamivudine. Therefore, cross-resistance among these NRTIs may occur in patients whose virus harbors the K65R or K70E substitutions. HIV-1 isolates from subjects (N=20) whose HIV-1 expressed a mean of 3 zidovudine-associated RT amino acid substitutions (M41L, D67N, K70R, L210W, T215Y/F, or K219Q/E/N) showed a 3.1-fold decrease in the susceptibility to tenofovir. Subjects whose virus expressed an L74V substitution without zidovudine resistance-associated substitutions (N=8) had reduced response to tenofovir disoproxil fumarate. Limited data are available for patients whose virus expressed a Y115F substitution (N=3), Q151M substitution (N=2), or T69 insertion (N=4), all of whom had a reduced response.
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement