Drug Interactions: See Tables 11 and 17 for listing of drugs that are contraindicated for use with lopinavir and ritonavir due to potentially life-threatening adverse events, significant drug interactions, or loss of virologic activity. (See Contraindications and Interactions.)
Pancreatitis: Pancreatitis has been observed in patients receiving lopinavir and ritonavir therapy, including those who developed marked triglyceride elevations. In some cases, fatalities have been observed. Although a causal relationship to lopinavir and ritonavir has not been established, marked triglyceride elevations are a risk factor for development of pancreatitis (see Immune Reconstitution Syndrome as follows). Patients with advanced HIV-1 disease may be at increased risk of elevated triglycerides and pancreatitis, and patients with a history of pancreatitis may be at increased risk for recurrence during lopinavir and ritonavir therapy.
Pancreatitis should be considered if clinical symptoms (nausea, vomiting, abdominal pain) or abnormalities in laboratory values (such as increased serum lipase or amylase values) suggestive of pancreatitis occur. Patients who exhibit these signs or symptoms should be evaluated and lopinavir and ritonavir and/or other antiretroviral therapy should be suspended as clinically appropriate.
Hepatotoxicity: Patients with underlying hepatitis B or C or marked elevations in transaminase prior to treatment may be at increased risk for developing or worsening of transaminase elevations or hepatic decompensation with use of lopinavir and ritonavir.
There have been postmarketing reports of hepatic dysfunction, including some fatalities. These have generally occurred in patients with advanced HIV-1 disease taking multiple concomitant medications in the setting of underlying chronic hepatitis or cirrhosis. A causal relationship with lopinavir and ritonavir therapy has not been established.
Appropriate laboratory testing should be conducted prior to initiating therapy with lopinavir and ritonavir and patients should be monitored closely during treatment. Increased AST/ALT monitoring should be considered in the patients with underlying chronic hepatitis or cirrhosis, especially during the first several months of lopinavir and ritonavir treatment (see Hepatic Impairment as follows).
Diabetes Mellitus/Hyperglycemia: New onset diabetes mellitus, exacerbation of pre-existing diabetes mellitus, and hyperglycemia have been reported during post-marketing surveillance in HIV-1 infected patients receiving protease inhibitor therapy. Some patients required either initiation or dose adjustments of insulin or oral hypoglycemic agents for treatment of these events. In some cases, diabetic ketoacidosis has occurred. In those patients who discontinued protease inhibitor therapy, hyperglycemia persisted in some cases. Because these events have been reported voluntarily during clinical practice, estimates of frequency cannot be made and a causal relationship between protease inhibitor therapy and these events has not been established.
PR Interval Prolongation: Lopinavir/ritonavir prolongs the PR interval in some patients. Cases of second or third degree atrioventricular block have been reported. Lopinavir and Ritonavir should be used with caution in patients with underlying structural heart disease, preexisting conduction system abnormalities, ischemic heart disease or cardiomyopathies, as these patients may be at increased risk for developing cardiac conduction abnormalities.
The impact on the PR interval of co-administration of lopinavir and ritonavir with other drugs that prolong the PR interval (including calcium channel blockers, beta-adrenergic blockers, digoxin and atazanavir) has not been evaluated. As a result, co-administration of lopinavir and ritonavir with these drugs should be undertaken with caution, particularly with those drugs metabolized by CYP3A. Clinical monitoring is recommended (see Pharmacology: Pharmacokinetics under Actions).
QT Interval Prolongation: Postmarketing cases of QT interval prolongation and torsade de pointes have been reported although causality of lopinavir and ritonavir could not be established. Avoid use in patients with congenital long QT syndrome, those with hypokalemia, and with other drugs that prolong the QT interval (see Pharmacology: Pharmacokinetics under Actions).
Immune Reconstitution Syndrome: Immune reconstitution syndrome has been reported in patients treated with combination antiretroviral therapy, including lopinavir and ritonavir. During the initial phase of combination antiretroviral treatment, patients whose immune system responds may develop an inflammatory response to indolent or residual opportunistic infections (such as Mycobacterium avium infection, cytomegalovirus, Pneumocystis jirovecii pneumonia [PCP], or tuberculosis) which may necessitate further evaluation and treatment.
Fat Redistribution: Redistribution/accumulation of body fat including central obesity, dorsocervical fat enlargement (buffalo hump), peripheral wasting, facial wasting, breast enlargement, and "cushingoid appearance" have been observed in patients receiving antiretroviral therapy. The mechanism and long-term consequences of these events are currently unknown. A causal relationship has not been established.
Lipid Elevations: Treatment with lopinavir and ritonavir has resulted in large increases in the concentration of total cholesterol and triglycerides (see Adults - Clinical Trials Experience under Adverse Reactions). Triglyceride and cholesterol testing should be performed prior to initiating lopinavir and ritonavir therapy and at periodic intervals during therapy. Lipid disorders should be managed as clinically appropriate, taking into account any potential drug-drug interactions with lopinavir and ritonavir and HMG-CoA reductase inhibitors. (See Contraindications and Established and Other Potentially Significant Drug Interactions under Interactions.)
Patients with Hemophilia: Increased bleeding, including spontaneous skin hematomas and hemarthrosis have been reported in patients with hemophilia type A and B treated with protease inhibitors. In some patients additional factor VIII was given. In more than half of the reported cases, treatment with protease inhibitors was continued or reintroduced. A causal relationship between protease inhibitor therapy and these events has not been established.
Resistance/Cross-resistance: Because the potential for HIV cross-resistance among protease inhibitors has not been fully explored in lopinavir and ritonavir-treated patients, it is unknown what effect therapy with lopinavir and ritonavir will have on the activity of subsequently administered protease inhibitors. (See Microbiology under Actions.)
Hepatic Impairment: Lopinavir and Ritonavir is principally metabolized by the liver; therefore, caution should be exercised when administering this drug to patients with hepatic impairment, because lopinavir concentrations may be increased (see Hepatotoxicity under Precautions and Pharmacology: Pharmacokinetics under Actions).
Use in Children: The safety, efficacy, and pharmacokinetic profiles of lopinavir and ritonavir in pediatric patients below the age of 14 days have not been established. Lopinavir and Ritonavir once daily has not been evaluated in pediatric patients.
An open-label, multi-center, dose-finding trial was performed to evaluate the pharmacokinetic profile, tolerability, safety and efficacy of lopinavir and ritonavir oral solution containing lopinavir 80 mg/mL and ritonavir 20 mg/mL at a dose of with 300/75 mg/m2 twice daily plus two NRTIs in HIV-infected infants ≥14 days and < 6 months of age. Results revealed that infants younger than 6 months of age generally had lower lopinavir AUC12 than older children (6 months to 12 years of age), however, despite the lower lopinavir drug exposure observed, antiviral activity was demonstrated as reflected in the proportion of subjects who achieved HIV-RNA <400 copies/mL at Week 24 (see Pediatric Patients - Clinical Trials Experience under Adverse Reactions, Pharmacology: Pharmacokinetics and Pharmacodynamics: Clinical Studies under Actions).
Safety and efficacy in pediatric patients > 6 months of age was demonstrated in a clinical trial in 100 patients. The clinical trial was an open-label, multicenter trial evaluating the pharmacokinetic profile, tolerability, safety, and efficacy of lopinavir and ritonavir oral solution containing lopinavir 80 mg/mL and ritonavir 20 mg/mL in 100 antiretroviral naïve and experienced pediatric patients ages 6 months to 12 years. Dose selection for patients 6 months to 12 years of age was based on the following results. The 230/57.5 mg/m2 oral solution twice daily regimen without nevirapine and the 300/75 mg/m2 oral solution twice daily regimen with nevirapine provided lopinavir plasma concentrations similar to those obtained in adult patients receiving the 400/100 mg twice daily regimen (without nevirapine) (see Pediatric Patients - Clinical Trials Experience under Adverse Reactions, Pharmacology: Pharmacokinetics and Pharmacodynamics: Clinical Studies under Actions).
A prospective multicenter, open-label trial evaluated the pharmacokinetic profile, tolerability, safety and efficacy of high-dose lopinavir and ritonavir with or without concurrent NNRTI therapy (Group 1: 400/100 mg/m2 twice daily + ≥ 2 NRTIs; Group 2: 480/120 mg/m2 twice daily + ≥ 1 NRTI + 1 NNRTI) in children and adolescents ≥ 2 years to < 18 years of age who had failed prior therapy. Patients also had saquinavir mesylate added to their regimen. This strategy was intended to assess whether higher than approved doses of lopinavir and ritonavir could overcome protease inhibitor cross-resistance. High doses of lopinavir and ritonavir exhibited a safety profile similar to those observed in previous trials; changes in HIV-1 RNA were less than anticipated; three patients had HIV-1 RNA <400 copies/mL at Week 48. CD4+ cell count increases were noted in the eight patients who remained on treatment for 48 weeks, (see Pediatric Patients - Clinical Trials Experience under Adverse Reactions and Pharmacology: Pharmacokinetics under Actions).
Use in the Elderly: Clinical studies of lopinavir and ritonavir did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. In general, appropriate caution should be exercised in the administration and monitoring of lopinavir and ritonavir in elderly patients reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.
Other Services
Country
Account