Pharmacology: Mechanism of Action: Tacrolimus inhibits T-lymphocyte activation although the exact mechanism of action is not known. Experimental evidence suggests that tacrolimus binds to an intracellular protein, FKBP-12. A complex of tacrolimus-FKBP-12 calcium, calmodulin, and calcineurin is then formed and the phosphatase activity of calcineurin inhibited. This effect may prevent the dephosphorylation and translocation of nuclear factor of activated T-cells (NF-AT), a nuclear component through to initiate gene transcription for the formation of lymphokines (such as interleukin-2, gamma interferon). The net result is the inhibition of T-lymphocyte activation (i.e., immunosuppression).
Tacrolimus prolongs the survival of the host and transplanted graft in animal transplant models of liver, kidney, heart, bone marrow, small bowel and pancreas, lung and trachea, skin, cornea, and limb.
In animals, tacrolimus has been demonstrated to suppress some humoral immunity and, to a greater extent, cell-mediated reactions such as allograft rejection, delayed type hypersensitivity, collagen-induced arthritis, experimental allergic encephalomyelitis, and graft versus host disease.
Pharmacokinetics: Tacrolimus activity is primarily due to the parent drug. The pharmacokinetics parameters (mean±S.D.) of tacrolimus have been determined following intravenous (IV) and/or oral (PO) administration in healthy volunteers, liver transplant and kidney transplant patients (see Table 1).
Click on icon to see table/diagram/image
Due to intersubject variability in tacrolimus pharmacokinetics, individualization of dosing regimen is necessary for optimal therapy (see Dosage & Administration). Pharmacokinetics data indicate that whole blood concentrations rather than plasma concentrations serve as the more appropriate sampling compartment to describe tacrolimus pharmacokinetics.
Absorption: Absorption of tacrolimus from the gastrointestinal tract after oral administration is incomplete and variable. The absolute bioavailability of tacrolimus was 17±10% in adult kidney transplant patients (N=26), 22±6% in adult liver transplant patients (N=7) and 18±5% in healthy volunteers (N=16).
A single dose study conducted in 32 healthy volunteers established the bioequivalence of the 1 mg and 5 mg capsules. Another single dose study in 32 healthy volunteers established the bioequivalence of the 0.5 mg and 1 mg capsules. Tacrolimus maximum blood concentration (C
max) and area under the curve (AUC) appeared to increase in a dose-proportional fashion in 18 fasted healthy volunteers receiving a single oral dose of 3, 7 and 10 mg.
In 18 kidney transplant patients, tacrolimus trough concentrations from 3 to 30 ng/mL measured at 10-12 hours post-dose (C
min) correlated well with the AUC (correlation coefficient 0.93). In 24 liver transplant patients over a concentration range of 10 to 60 ng/mL the correlation coefficient was 0.94.
Food Effects: The rate and extent of tacrolimus absorption were greatest under fasted conditions. The presence and composition of food decreased both the rate and extent of tacrolimus absorption when administered to 15 healthy volunteers.
The effect was most pronounced with a high-fat meal (848 kcal, 46% fat): mean AUC and C
max were decreased 37% and 77%, respectively; T
max was lengthened 5-fold. A high-carbohydrate meal (668 kcal, 85% carbohydrate) decreased mean AUC and mean C
max by 28% and 65%, respectively.
In healthy volunteers (N=16), the time of the meal also affected tacrolimus bioavailability. When given immediately following the meal, mean C
max was reduced 71%, and mean AUC was reduced 39% relative to the fasted condition. When administered 1.5 hours following the meal, mean C
max reduced 63%, and mean AUC was reduced 39%, relative to the fasted condition.
In 11 liver transplant patients, Prograf administered 15 minutes after a high fat (400 kcal, 34% fat) breakfast, resulted in decreased AUC (27±18%) and C
max (50±19%), as compared to a fasted state.
Distribution: The plasma protein binding of tacrolimus is approximately 99% and is independent of concentration over a range of 5-50 ng/mL. Tacrolimus is bound mainly to albumin and alpha-1 acid glycoprotein, and has a high level of association with erythrocytes. The distribution of tacrolimus between whole blood and plasma depends on several factors, such as hematocrit, temperature at the time of plasma separation, drug concentration, and plasma protein concentration. In a U.S. study, the ratio of whole blood concentration to plasma concentration averaged 35 (range 12 to 67).
Metabolism: Tacrolimus is extensively metabolized by the mixed-function oxidase system, primarily the cytochrome P450-3A4 (CYP3A4) and the cytochrome P450-3A5 (CYP3A5). A metabolic pathway leading to the formation of 8 possible metabolites has been proposed. Demethylation and hydroxylation were identified as the primary mechanisms of biotransformation
in vitro. The major metabolite identified in incubations with human liver microsomes is 13-demethyl tacrolimus. In
in vitro studies, a 31-demethyl metabolite has been reported to have the same activity as tacrolimus.
Excretion: The mean clearance following IV administration of tacrolimus is 0.040, 0.083 and 0.053 L/hr/kg in healthy volunteers, adult kidney transplant patients and adult liver transplant patients, respectively. In man, less than 1% of the dose administered is excreted unchanged in urine.
In a mass balance study of IV administered radiolabeled tacrolimus to 6 healthy volunteers, the mean recovery of radiolabel was 77.8%±12.7%. Fecal elimination accounted for 92.4±1.0% and the elimination half-life based on radioactivity was 48.1±15.9 hours whereas it was 43.5±11.6 hours based on tacrolimus concentrations. The mean clearance of radiolabel was 0.029±0.015 L/hr/kg and clearance of tacrolimus was 0.029±0.009 L/hr/kg. When administered PO, the mean recovery of the radiolabel was 94.9±30.7%. Fecal elimination accounted for 92.6±30.7%, urinary elimination accounted for 2.3±1.1% and the elimination half-life based on radioactivity was 31.9±10.5 hours whereas it was 48.4±12.3 hours based on tacrolimus concentrations. The mean clearance of radiolabel was 0.226±0.116 L/hr/kg and clearance of tacrolimus 0.172±0.088 L/hr/kg.
Special Populations: Pediatric: Pharmacokinetics of tacrolimus have been studied in liver transplantation patients, 0.7 to 13.2 years of age. Following IV administration of a 0.037 mg/kg/day dose to 12 pediatric patients, mean terminal half-life, volume of distribution and clearance were 11.5±3.8 hours, 2.6±2.1 L/kg and 0.138±0.071 L/hr/kg, respectively.
Following oral administration to 9 patients, mean AUC and C
max were 337±167 ng·hr/mL and 48.4±27.9 ng/mL, respectively. The absolute bioavailability was 31±24%.
Whole blood trough concentrations from 31 patients less than 12 years old showed that pediatric patients need higher doses than adults to achieve similar tacrolimus trough concentrations (see Dosage & Administration).
Renal and Hepatic Insufficiency: The mean pharmacokinetic parameters for tacrolimus following single administrations to patients with renal and hepatic impairment are given in the following table. (See Table 2.)
Click on icon to see table/diagram/image
Renal Insufficiency:
Tacrolimus pharmacokinetics following a single IV administration were determined in 12 patients (7 not on dialysis and 5 on dialysis, serum creatinine of 3.9±1.6 and 12.0±2.4 mg/dL, respectively) prior to their kidney transplant. The pharmacokinetic parameters obtained were similar for both groups.
The mean clearance of tacrolimus in patients with renal dysfunction was similar to that in normal volunteers (see previous table).
Hepatic Insufficiency: Tacrolimus pharmacokinetics have been determined in six patients with mild hepatic dysfunction (mean Pugh score: 6.2) following single IV and oral administrations. The mean clearance of tacrolimus in patients with mild hepatic dysfunction was not substantially different from that in normal volunteers (see previous table). Tacrolimus pharmacokinetics were studied in 6 patients with severe hepatic dysfunction (mean Pugh score: >10). The mean clearance was substantially lower in patients with severe hepatic dysfunction, irrespective of the route of administration.
Race: A formal study to evaluate the pharmacokinetic disposition of tacrolimus in Black transplant patients has not been conducted. However, a retrospective comparison of Black and Caucasian kidney transplant patients indicated that Black patients required higher tacrolimus doses to attain similar trough concentrations (see Dosage & Administration).
Gender: The effect of gender on tacrolimus pharmacokinetics has not been evaluated, however there was no difference in dosing by gender in the kidney transplant trial.
Nonclinical Toxicology: Carcinogenesis, Mutagenesis and Impairment of Fertility: An increased incidence of malignancy is a recognized complication of immunosuppression in recipients of organ transplants. The most common forms of neoplasms are non-Hodgkin's lymphomas and carcinomas of the skin. As with other immunosuppressive therapies, the risk of malignancies in Prograf recipients may be higher than in the normal, healthy population. Lymphoproliferative disorders associated with Epstein-Barr Virus infection have been seen. It has been reported that reduction or discontinuation of immunosuppression may cause the lesions to regress.
No evidence of genotoxicity was seen in bacterial (Salmonella and
E. coli) or mammalian (Chinese hamster lung derived cells)
in vitro assays of mutagenicity, the
in vitro CHO/HGPRT assay of mutagenicity, or
in vivo clastogenicity assays performed in mice; tacrolimus did not cause unscheduled DNA synthesis in rodent hepatocytes.
Carcinogenicity studies were carried out in male and female rats and mice. In the 80-week mouse study and in the 104-week rat study no relationship of tumor incidence to tacrolimus dosage was found. The highest doses used in the mouse and rat studies were 0.8-2.5 times (mice) and 3.5-7.1 times (rats) the recommended clinical dose range of 0.1-0.2 mg/kg/day when corrected for body surface area.
Embryotoxicity was observed in animal studies. Tacrolimus subcutaneously administered to male rats at a doses of 2 or 3 mg/kg/day (1.6 to 6.4 times the clinical dose range based on body surface area) resulted in a dose-related decrease in sperm count. Tacrolimus given orally at 1.0 mg/kg (0.8 to 2.2 times the clinical dose range based on body surface area) to male and female rats, prior to and during mating, as well as to dams during gestation and lactation, was associated with embryolethality and adverse effects on female reproduction which were indicated by a higher rate of post-implantation loss and increased numbers of undelivered and nonviable pups. When given at 3.2 mg/kg (2.6 to 6.9 times the clinical dose range based on body surface area correction), tacrolimus was associated with maternal and paternal toxicity as well as reproductive toxicity including marked adverse effects on estrus cycles, parturition, pup viability, and pup malformations.
Clinical Studies: Liver Transplantation: The safety and efficacy of Prograf-based immunosuppression following orthotopic liver transplantation were assessed in two prospective, randomized, non-blinded multicenter studies. The active control groups were treated with a cyclosporine-based immunosuppressive regimen. Both studies used concomitant adrenal corticosteroids as part of the immunosuppressive regimens. These studies were designed to evaluate whether the two regimens were therapeutically equivalent, with patient and graft survival at 12 months following transplantation as the primary endpoints. The Prograf-based immunosuppressive regimen was found to be equivalent to the cyclosporine-based immunosuppressive regimens.
In one trial, 529 patients were enrolled at 12 clinical sites in the United States; prior to surgery, 263 were randomized to the Prograf-based immunosuppressive regimen and 266 to a cyclosporine-based immunosuppressive regimen (CBIR). In 10 of the 12 sites, the same CBIR protocol was used, while 2 sites used different control protocols. This trial excluded patients with renal dysfunction, fulminant hepatic failure with Stage IV encephalopathy, and cancers; pediatric patients (<12 years old) were allowed.
In the second trial, 545 patients were enrolled at 8 clinical sites in Europe; prior to surgery, 270 were randomized to the Prograf-based immunosuppressive regimen and 275 to CBIR. In this study, each center used its local standard CBIR protocol in the active-control arm. This trial excluded pediatric patients, but did allow enrollment of subjects with renal dysfunction, fulminant hepatic failure in Stage IV encephalopathy, and cancers other than primary hepatic with metastases.
One year patient survival and graft survival in the Prograf-based treatment groups were equivalent to those in the CBIR treatment groups in both studies. The overall one-year patient survival (CBIR and Prograf-based treatment groups combined) was 88% in the U.S. study and 78% in the European study. The overall one-year graft survival (CBIR and Prograf-based treatment groups combined) was 81% in the U.S. study and 73% in the European study. In both studies, the median time to convert from IV to oral Prograf dosing was 2 days.
Although there is a lack of direct correlation between tacrolimus concentrations and drug efficacy, data from Phase II and III studies of liver transplant patients have shown an increasing incidence of adverse events with increasing trough blood concentrations. Most patients are stable when trough whole blood concentrations are maintained between 5 to 20 ng/mL. Long term post-transplant patients often are maintained at the low end of this target range.
Data from the U.S. clinical trial show that tacrolimus whole blood concentrations, as measured by ELISA, were most variable during the first week post-transplantation. After this early period, the median trough blood concentrations, measured at intervals from the second week to one year post-transplantation, ranged from 9.8 ng/mL to 19.4 ng/mL.
Because of the nature of the study design, comparisons of differences in secondary endpoints, such as incidence of acute rejection, refractory rejection or use of OKT3 for steroid-resistant rejection, could not be reliably made.
Kidney Transplantation: Prograf/azathioprine: Prograf-based immunosuppression in conjunction with azathioprine and corticosteroids following kidney transplantation was assessed in a Phase 3 randomized, multicenter, non-blinded, prospective study. There were 412 kidney transplant patients enrolled at 19 clinical sites in the United States. Study therapy was initiated when renal function was stable as indicated by a serum creatinine ≤4 mg/dL (median of 4 days after transplantation, range 1 to 14 days). Patients less than 6 years of age were excluded.
There were 205 patients randomized to Prograf-based immunosuppression and 207 patients were randomized to cyclosporine-based immunosuppression. All patients received prophylactic induction therapy consisting of an antilymphocyte antibody preparation, corticosteroids and azathioprine. Overall one year patient and graft survival was 96.1% and 89.6%, respectively and was equivalent between treatment arms.
Data from a Phase 3 US study of Prograf in conjunction with azathioprine indicates that trough concentrations of tacrolimus in whole blood, as measured by IMx, were most variable during the first week of dosing. During the first three months of that trial, 80% of the patients maintained trough concentrations between 7-20 ng/mL, and then between 5-15 ng/mL, through 1 year.
Because of the nature of the study design, comparisons of differences in secondary endpoints, such as incidence of acute rejection, refractory rejection or use of OKT3 for steroid-resistant rejection, could not be reliably made.
Prograf/mycophenolate mofetil (MMF): Prograf-based immunosuppression in conjunction with MMF, corticosteroids, and induction has been studied. In a randomized, open-label, multi-center trial (Study 1), 1589 kidney transplant patients received Prograf (Group C, n=401), sirolimus (Group D, n=399), or one of two cyclosporine regimens (Group A, n=390 and Group B, n=399) in combination with MMF and corticosteroids; all patients, except those in one of the two cyclosporine groups, also received induction with daclizumab. The study was conducted outside the United States; the study population was 93% Caucasian. In this study, mortality at 12 months in patients receiving Prograf/MMF was similar (2.7%) compared to patients receiving cyclosporine/MMF (3.3% and 1.8%) or sirolimus/MMF (3.0%). Patients in the Prograf group exhibited higher estimated creatinine clearance rates (eCLcr) using the Cockcroft-Gault formula (Table 3) and experienced fewer efficacy failures, defined as biopsy proven acute rejection (BPAR), graft loss, death, and/or lost to follow-up (Table 4) in comparison to each of the other three groups. Patients randomized to Prograf/MMF were more likely to develop diarrhea and diabetes after the transplantation and experienced similar rates of infections compared to patients randomized to either cyclosporine/MMF regimen (see Adverse Reactions). (See Tables 3 and 4.)
Click on icon to see table/diagram/image
Click on icon to see table/diagram/image
The protocol-specified target tacrolimus trough concentrations (C
troughs, Tac) were 3-7 ng/mL; however, the observed median C
troughs, Tac approximated 7 ng/mL throughout the 12 month study (Table 5). Approximately 80% of patients maintained tacrolimus whole blood concentrations between 4-11 ng/mL through 1 year post-transplant. (See Table 5.)
Click on icon to see table/diagram/image
The protocol-specified target cyclosporine trough concentrations (C
trough, CsA) for Group B were 50-100 ng/mL; however, the observed median C
trough, CsA approximated 100 ng/mL throughout the 12 month study. The protocol-specified target C
trough, CsA for Group A were 150-300 ng/mL for the first 3 months and 100-200 ng/mL from month 4 to month 12; the observed median C
trough, CsA approximated 225 ng/mL for the first 3 months and 140 ng/mL from month 4 to month 12.
While patients in all groups started MMF at 1 g BID, the MMF dose was reduced to <2 g/day in 63% of patients in the tacrolimus treatment arm by month 12 (Table 6); approximately 50% of these MMF dose reductions were due to adverse events. By comparison, the MMF dose was reduced to <2 g/day in 49% and 45% of patients in the two cyclosporine arms (Group A and Group B, respectively), by month 12 and approximately 40% of MMF dose reductions were due to adverse events. (See Table 6.)
Click on icon to see table/diagram/image
In a second randomized, open-label, multi-center trial (Study 2), 424 kidney transplant patients received Prograf (n=212) or cyclosporine (n=212) in combination with MMF 1 gram BID, basiliximab induction, and corticosteroids. In this study, the rate for the combined endpoint of biopsy proven acute rejection, graft failure, death, and/or lost to follow-up at 12 months in the Prograf/MMF group was similar to the rate in the cyclosporine/MMF group. There was, however, an imbalance in mortality at 12 months in those patients receiving Prograf/MMF (4.2%) compared to those receiving cyclosporine/MMF (2.4%), including cases attributed to over-immunosuppression (Table 7). (See Table 7.)
Click on icon to see table/diagram/image
The protocol-specified target tacrolimus whole blood trough concentrations (C
trough, Tac) in Study 2 were 7-16 ng/mL for the first three months and 5-15 ng/mL thereafter. The observed median C
trough, Tac approximated 10 ng/mL during the first three months and 8 ng/mL from month 4 to month 12 (Table 8). (See Table 8.)
Click on icon to see table/diagram/image
The protocol-specified target cyclosporine whole blood concentrations (C
trough, CsA) were 125 to 400 ng/mL for the first three months, and 100 to 300 ng/mL thereafter. The observed median C
trough, CsA approximated 280 ng/mL during the first three months and 190 ng/mL from month 4 to month 12.
Patients in both groups started MMF at 1 g BID. The MMF dose was reduced to <2 g/day by month 12 in 62% of patients in the Prograf/MMF group (Table 9) and in 47% of patients in the cyclosporine/MMF group. Approximately 63% and 55% of these MMF dose reductions were because of adverse events in the Prograf/MMF group and the cyclosporine/MMF group, respectively. (See Table 9.)
Click on icon to see table/diagram/image
Lupus nephritis: Patients with lupus nephritis who were refractory to steroid monotherapy and exhibited clinical signs of chronic nephritis with immunological activity were treated with this product for 28 weeks in the Phase III trial. The rate of change in the total score* of disease activity at the final measurement was -32.9%. The rate of change in the actual values of daily urinary protein excretion and complement (C3), which are indexes of chronic nephritis and immunological activity, respectively, were -60.8% and 16.4%, and the change in creatinine clearance (CCr) was -22.0%. (See Table 10.)
Click on icon to see table/diagram/image