Advertisement
Advertisement
Nebiloc CCB

Nebiloc CCB Mechanism of Action

Manufacturer:

Ajanta Pharma Phil

Distributor:

Ajanta Pharma Phil
Full Prescribing Info
Action
Pharmacology: Pharmacodynamics: Nebivolol: Nebivolol is a racemate of two enantiomers, SRRR-nebivolol (or d-nebivolol) and RSSS-nebivolol (or l-nebivolol). It combines two pharmacological activities: It is a competitive and selective beta-receptor antagonist: this effect is attributed to the SRRR-enantiomer (d-enantiomer).
It has mild vasodilating properties due to an interaction with the L-arginine/nitric oxide pathway.
Single and repeated doses of nebivolol reduce heart rate and blood pressure at rest and during exercise, both in normotensive subjects and in hypertensive patients. The antihypertensive effect is maintained during chronic treatment.
At therapeutic doses, nebivolol is devoid of alpha-adrenergic antagonism.
In hypertensive patients, nebivolol increases the NO-mediated vascular response to acetylcholine (ACh) which is reduced in patients with endothelial dysfunction.
In vitro and in vivo experiments in animals showed that Nebivolol has no intrinsic sympathomimetic activity.
In vitro and in vivo experiments in animals showed that at pharmacological doses nebivolol has no membrane stabilising action.
In healthy volunteers, nebivolol has no significant effect on maximal exercise capacity or endurance.
Available preclinical and clinical evidence in hypertensive patients has not shown that nebivolol has a detrimental effect on erectile function.
Amlodipine: Amlodipine is a calcium ion influx inhibitor of the dihydropyridine group (slow channel blocker or calcium ion antagonist) and inhibits the transmembrane influx of calcium ions into cardiac and vascular smooth muscle.
The mechanism of the antihypertensive action of amlodipine is due to a direct relaxant effect on vascular smooth muscle. The precise mechanism by which amlodipine relieves angina has not been fully determined but amlodipine reduces total ischaemic burden by the following two actions: Amlodipine dilates peripheral arterioles and thus, reduces the total peripheral resistance (afterload) against which the heart works. Since the heart rate remains stable, this unloading of the heart reduces myocardial energy consumption and oxygen requirements.
The mechanism of action of amlodipine also probably involves dilatation of the main coronary arteries and coronary arterioles, both in normal and ischaemic regions. This dilatation increases myocardial oxygen delivery in patients with coronary artery spasm (Prinzmetal's or variant angina).
In patients with hypertension, once daily dosing provides clinically significant reductions of blood pressure in both the supine and standing positions throughout the 24 hour interval. Due to the slow onset of action, acute hypotension is not a feature of amlodipine administration.
In patients with angina, once daily administration of amlodipine increases total exercise time, time to angina onset, and time to 1mm ST segment depression, and decreases both angina attack frequency and glyceryl trinitrate tablet consumption.
Amlodipine has not been associated with any adverse metabolic effects or changes in plasma lipids and is suitable for use in patients with asthma, diabetes, and gout.
Pharmacokinetics: Nebivolol: Both nebivolol enantiomers are rapidly absorbed after oral administration. The absorption of nebivolol is not affected by food; nebivolol can be given with or without meals.
Nebivolol is extensively metabolised, partly to active hydroxy-metabolites. Nebivolol is metabolised via alicyclic and aromatic hydroxylation, N-dealkylation and glucuronidation; in addition, glucuronides of the hydroxy-metabolites are formed. The metabolism of nebivolol by aromatic hydroxylation is subject to the CYP2D6 dependent genetic oxidative polymorphism. The oral bioavailability of nebivolol averages 12% in fast metabolisers and is virtually complete in slow metabolisers. At steady state and at the same dose level, the peak plasma concentration of unchanged nebivolol is about 23 times higher in poor metabolisers than in extensive metabolisers. When unchanged drug plus active metabolites are considered, the difference in peak plasma concentrations is 1.3 to 1.4 fold. Because of the variation in rates of metabolism, the dose of Nebivolol should always be adjusted to the individual requirements of the patient: poor metabolisers therefore may require lower doses.
In fast metabolisers, elimination half-lives of the nebivolol enantiomers average 10 hours. In slow metabolisers, they are 3-5 times longer. In fast metabolisers, plasma levels of the RSSS-enantiomer are slightly higher than for the SRRR-enantiomer. In slow metabolisers, this difference is larger. In fast metabolisers, elimination half-lives of the hydroxymetabolites of both enantiomers average 24 hours, and are about twice as long in slow metabolisers.
Steady-state plasma levels in most subjects (fast metabolisers) are reached within 24 hours for nebivolol and within a few days for the hydroxy-metabolites.
Plasma concentrations are dose-proportional between 1 and 30 mg. The pharmacokinetics of nebivolol are not affected by age.
In plasma, both nebivolol enantiomers are predominantly bound to albumin.
Plasma protein binding is 98.1% for SRRR-nebivolol and 97.9% for RSSS-nebivolol.
One week after administration, 38% of the dose is excreted in the urine and 48% in the faeces. Urinary excretion of unchanged nebivolol is less than 0.5% of the dose.
Amlodipine: Absorption distribution plasma protein binding: After oral administration of therapeutic doses, amlodipine is well absorbed with peak blood levels between 6-12 hours post dose. Absolute bioavailability has been estimated to be between 64 and 80%. The volume of distribution is approximately 21 l/kg. In vitro studies have shown that approximately 97.5% of circulating amlodipine is bound to plasma proteins.
The bioavailability of amlodipine is not affected by food intake.
Biotransformation/elimination: The terminal plasma elimination half-life is about 35-50 hours and is consistent with once daily dosing. Amlodipine is extensively metabolised by the liver to inactive metabolites with 10% of the parent compound and 60% of metabolites excreted in the urine.
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement