Co-Zincretin 50/500/Co-Zincretin XR 100/1000: Sitagliptin and metformin: Co-administration of multiple doses of sitagliptin (50 mg b.i.d.) and metformin (1,000 mg b.i.d.) did not meaningfully alter the pharmacokinetics of either sitagliptin or metformin in patients with type 2 diabetes. Pharmacokinetic drug interaction studies with Sitagliptin Phosphate + Metformin HCl have not been performed; however, such studies have been conducted with the individual components of Sitagliptin Phosphate + Metformin HCl, sitagliptin and metformin.
Sitagliptin phosphate: In drug interaction studies, sitagliptin did not have clinically meaningful effects on the pharmacokinetics of the following: metformin, rosiglitazone, glyburide, simvastatin, warfarin, and oral contraceptives. Based on these data, sitagliptin does not inhibit CYP isozymes CYP3A4, 2C8, or 2C9. Based on in vitro data, sitagliptin is also not expected to inhibit CYP2D6, 1A2, 2C19 or 2B6 or to induce CYP3A4.
Population pharmacokinetic analyses have been conducted in patients with type 2 diabetes. Concomitant medications did not have a clinically meaningful effect on sitagliptin pharmacokinetics. Medications assessed were those that are commonly administered to patients with type 2 diabetes including cholesterol-lowering agents (e.g., statins, fibrates, ezetimibe), anti-platelet agents (e.g., clopidogrel), antihypertensives (e.g., ACE inhibitors, angiotensin receptor blockers, beta-blockers, calcium channel blockers, hydrochlorothiazide), analgesics and nonsteroidal anti -inflammatory agents (e.g., naproxen, diclofenac, celecoxib), anti-depressants (e.g., bupropion, fluoxetine, sertraline), antihistamines (e.g., cetirizine), proton-pump inhibitors (e.g., omeprazole, lansoprazole), and medications for erectile dysfunction (e.g., sildenafil).
There was a slight increase in the area under the curve (AUC, 11%) and mean peak drug concentration (Cmax, 18%) of digoxin with the coadministration of sitagliptin. These increases are not considered to be clinically meaningful. Patients receiving digoxin should be monitored appropriately. The AUC and Cmax of sitagliptin were increased approximately 29% and 68%, respectively, in subjects with coadministration of a single 100-mg oral dose of Sitagliptin Phosphate (Co-Zincretin 50/500/Co-Zincretin XR 100/1000) and a single 600 mg oral dose of cyclosporine, a potent probe inhibitor of p-glycoprotein. The observed changes in sitagliptin pharmacokinetics are not considered likely to be clinically meaningful.
Metformin hydrochloride: Glyburide: In a single-dose interaction study in type 2 diabetes patients, coadministration of metformin and glyburide did not result in any changes in either metformin pharmacokinetics or pharmacodynamics. Decreases in glyburide AUC and Cmax were observed, but were highly variable. The single-dose nature of this study and the lack of correlation between glyburide blood levels and pharmacodynamic effects make the clinical significance of this interaction uncertain.
Furosemide: A single-dose, metformin-furosemide drug interaction study in healthy subjects demonstrated that pharmacokinetic parameters of both compounds were affected by coadministration. Furosemide increased the metformin plasma and blood Cmax by 22% and blood AUC by 15%, without any significant change in metformin renal clearance. When administered with metformin, the Cmax and AUC of furosemide were 31% and 12% smaller, respectively, than when administered alone, and the terminal half-life was decreased by 32%, without any significant change in furosemide renal clearance. No information is available about the interaction of metformin and furosemide when coadministered chronically.
Nifedipine: A single-dose, metformin-nifedipine drug interaction study in normal healthy volunteers demonstrated that coadministration of nifedipine increased plasma metformin Cmax and AUC by 20% and 9%, respectively, and increased the amount excreted in the urine. Tmax and half-life were unaffected. Nifedipine appears to enhance the absorption of metformin. Metformin had minimal effects on nifedipine.
Drugs that reduce metformin clearance: Concomitant use of drugs that interfere with common renal tubular transport systems involved in the renal elimination of metformin (e.g., organic cationic transporter-2 [OCT2]/multidrug and toxin extrusion [MATE] inhibitors such as ranolazine, vandetanib, dolutegravir, and cimetidine) could increase systemic exposure to metformin and may increase the risk for lactic acidosis. Consider the benefits and risks of concomitant use.
Other: Certain drugs tend to produce hyperglycemia and may lead to loss of glycemic control. These drugs include the thiazides and other diuretics, corticosteroids, phenothiazines, thyroid products, estrogens, oral contraceptives, phenytoin, nicotinic acid, sympathomimetics, calcium channel blocking drugs, and isoniazid. When such drugs are administered to a patient receiving Sitagliptin Phosphate + Metformin HCl the patient should be closely observed to maintain adequate glycemic control.
In healthy volunteers, the pharmacokinetics of metformin and propranolol, and metformin and ibuprofen were not affected when coadministered in single-dose interaction studies.
Metformin is negligibly bound to plasma proteins and is, therefore, less likely to interact with highly protein-bound drugs such as salicylates, sulfonamides, chloramphenicol, and probenecid, as compared to the sulfonylureas, which are extensively bound to serum proteins.
Co-Zincretin 50/1000: Co-administration of multiple doses of sitagliptin (50 mg twice daily) and metformin (1,000 mg twice daily) did not meaningfully alter the pharmacokinetics of either sitagliptin or metformin in patients with type 2 diabetes.
Pharmacokinetic drug interaction studies with sitagliptin and metformin have not been performed; however, such studies have been conducted with the individual active substances, sitagliptin and metformin.
Concomitant use not recommended: Alcohol: Alcohol intoxication is associated with an increased risk of lactic acidosis, particularly in cases of fasting, malnutrition or hepatic impairment.
Iodinated contrast agents: The product must be discontinued prior to or at the time of the imaging procedure and not restarted until at least 48 hours after, provided that renal function has been re-evaluated and found to be stable.
Combinations requiring precautions for use: Some medicinal products can adversely affect renal function, which may increase the risk of lactic acidosis, e.g. NSAIDs, including selective cyclo-oxygenase (COX) II inhibitors, ACE inhibitors, angiotensin II receptor antagonists and diuretics, especially loop diuretics. When starting or using such products in combination with metformin, close monitoring of renal function is necessary.
Concomitant use of drugs that interfere with common renal tubular transport systems involved in the renal elimination of metformin (e.g., organic cationic transporter-2 [OCT2]/multidrug and toxin extrusion [MATE] inhibitors such as ranolazine, vandetanib, dolutegravir, and cimetidine) could increase systemic exposure to metformin and may increase the risk for lactic acidosis. Consider the benefits and risks of concomitant use. Close monitoring of glycaemic control, dose adjustment within the recommended posology and changes in diabetic treatment should be considered when such products are co-administered.
Glucocorticoids (given by systemic and local routes) beta-2-agonists, and diuretics have intrinsic hyperglycaemic activity. The patient should be informed and more frequent blood glucose monitoring performed, especially at the beginning of treatment with such medicinal products. If necessary, the dose of the antihyperglycaemic medicinal product should be adjusted during therapy with the other medicinal product and on its discontinuation.
ACE-inhibitors may decrease the blood glucose levels. If necessary, the dose of the anti-hyperglycaemic medicinal product should be adjusted during therapy with the other medicinal product and on its discontinuation.
Other Services
Country
Account