Pharmacotherapeutic group: Drugs used in diabetes, blood glucose lowering drugs, excl. insulins.
Pharmacology: Pioglitazone is a thiazolidinedione antidiabetic agent that depends on the presence of insulin for its mechanism of action. Pioglitazone decreases insulin resistance in the periphery and in the liver resulting in increased insulin-dependent glucose disposal and decreased hepatic glucose output. Pioglitazone is a potent and highly selective agonist for peroxisome proliferator activated receptor-gamma (PPARγ).
PPARγ receptor are found in tissues important for insulin action such as adipose tissue, skeletal muscles and liver. Activation of PPARγ nuclear receptors modulates the transcription of a number of insulin responsive genes involved in the control of glucose and lipid metabolism. Since, Pioglitazone enhances the effects of circulating insulin (by decreasing insulin resistance). It does not lower blood glucose in absence of endogenous insulin.
Pharmacodynamics: Pioglitazone effects may be mediated by a reduction of insulin resistance. Pioglitazone appears to act via activation of specific nuclear receptors (peroxisome proliferator activated receptor gamma) leading to increased insulin sensitivity of liver, fat and skeletal muscle cells in animals. Treatment with pioglitazone has been shown to reduce hepatic glucose output and to increase peripheral glucose disposal in the case of insulin resistance.
Fasting and postprandial glycaemic control is improved in patients with type 2 diabetes mellitus. The improved glycaemic control is associated with a reduction in both fasting and postprandial plasma insulin concentrations. A clinical trial of pioglitazone vs. gliclazide as monotherapy was extended to two years in order to assess time to treatment failure (defined as appearance of HbA1c ≥ 8.0% after the first six months of therapy). Kaplan-Meier analysis showed shorter time to treatment failure in patients treated with gliclazide, compared with pioglitazone. At two years, glycaemic control (defined as HbA1c < 8.0%) was sustained in 69% of patients treated with pioglitazone, compared with 50% of patients on gliclazide. In a two-year study of combination therapy comparing pioglitazone with gliclazide when added to metformin, glycaemic control measured as mean change from baseline in HbA1c was similar between treatment groups after one year. The rate of deterioration of HbA1c during the second year was less with pioglitazone than with gliclazide.
In a placebo controlled trial, patients with inadequate glycaemic control despite a three month insulin optimisation period were randomised to pioglitazone or placebo for 12 months. Patients receiving pioglitazone had a mean reduction in HbA1c of 0.45% compared with those continuing on insulin alone, and a reduction of insulin dose in the pioglitazone treated group.
HOMA analysis shows that pioglitazone improves beta cell function as well as increasing insulin sensitivity. Two-year clinical studies have shown maintenance of this effect.
In one year clinical trials, pioglitazone consistently gave a statistically significant reduction in the albumin/creatinine ratio compared to baseline.
The effect of pioglitazone (45 mg monotherapy vs. placebo) was studied in a small 18-week trial in type 2 diabetics. Pioglitazone was associated with significant weight gain. Visceral fat was significantly decreased, while there was an increase in extra-abdominal fat mass. Similar changes in body fat distribution on pioglitazone have been accompanied by an improvement in insulin sensitivity. In most clinical trials, reduced total plasma triglycerides and free fatty acids, and increased HDL-cholesterol levels were observed as compared to placebo, with small, but not clinically significant increases in LDL-cholesterol levels.
In clinical trials of up to two years duration, pioglitazone reduced total plasma triglycerides and free fatty acids, and increased HDL cholesterol levels, compared with placebo, metformin or gliclazide. Pioglitazone did not cause statistically significant increases in LDL cholesterol levels compared with placebo, whilst reductions were observed with metformin and gliclazide. In a 20-week study, as well as reducing fasting triglycerides, pioglitazone reduced post prandial hypertriglyceridaemia through an effect on both absorbed and hepatically synthesised triglycerides. These effects were independent of pioglitazone's effects on glycaemia and were statistically significantly different to glibenclamide.
In proactive, a cardiovascular outcome study, 5,238 patients with type 2 diabetes mellitus and pre-existing major macrovascular disease were randomised to pioglitazone or placebo in addition to existing antidiabetic and cardiovascular therapy, for up to 3.5 years. The study population had an average age of 62 years; the average duration of diabetes was 9.5 years. Approximately one third of patients were receiving insulin in combination with metformin and/or a sulphonylurea. To be eligible patients had to have had one or more of the following: myocardial infarction, stroke, percutaneous cardiac intervention or coronary artery bypass graft, acute coronary syndrome, coronary artery disease, or peripheral arterial obstructive disease. Almost half of the patients had a previous myocardial infarction and approximately 20% had a stroke. Approximately half of the study population had at least two of the cardiovascular history entry criteria. Almost all subjects (95%) were receiving cardiovascular medicinal products (beta blockers, angiotensin-converting enzyme (ACE) inhibitors, angiotensin II antagonists, calcium channel blockers, nitrates, diuretics, acetylsalicylic acid, statins, fibrates).
Although the study failed regarding its primary endpoint, which was a composite of all-cause mortality, non-fatal myocardial infarction, stroke, acute coronary syndrome, major leg amputation, coronary revascularisation and leg revascularisation, the results suggest that there are no long-term cardiovascular concerns regarding use of pioglitazone. However, the incidences of oedema, weight gain and heart failure were increased. No increase in mortality from heart failure was observed.
Pharmacokinetics: Pioglitazone is rapidly absorbed after oral administration. Peak plasma concentrations are obtained within 2 hours and bioavailability exceed 80%. Pioglitazone is more than 99% bound to plasma proteins.
It is extensively metabolized by cytochrome P450 isoenzymes CYP3A4 and CYP2C9 to both active and inactive metabolites. It is excreted in the urine and feces and has a plasma half-life of up to 7 hours.
The active metabolites have a half-life of up to 24 hours.
Other Services
Country
Account